Supermassive black holes and strong gravity with Constellation-X

Chris Reynolds

Department of Astronomy University of Maryland

chris@astro.umd.edu

The black-hole/strong-gravity team

- Chris Reynolds team lead
- Mitch Begelman
- Andy Fabian
- Jon Miller
- James Reeves (next talk)
- Tod Strohmayer
- Kim Weaver

Also stay tuned for Jane Turner's talk

Outline

- The continued importance of broad iron lines
- Probing strong gravity
 - Detailed study of constraints from orbital timescale iron line variability
 - Scheme for searching from deviations from GR
- Black hole spins
 - Measuring spins from time-averaged broad iron lines
 - Estimates for number of sources measurable
- Spanning the mass scale of black holes

Re-affirmed importance of broad iron lines

Other Suzaku results (from review by J.Reeves)

I: Probing Strong Gravity: Rapid iron line variability

- Current broad iron line studies already provide qualitative test of GR!
 - Confirm strong gravitational redshifts close to BH
 - Confirm relativistic velocities close to BH
- But spacetime metric is encoded in radial dependence of V and z... time averaged line profiles do not contain enough information to probe this!
- Enter line variability...

QuickTime[™] and a YUV420 codec decompresso are needed to see this picture.

Iron line profiles changes in response to the echo of a rapid X-ray flare across the disk surface

"Relativistic iron line reverberation"

Reynolds et al. (1999) Young & Reynolds (2000)

QuickTime™ and a YUV420 codec decompressor are needed to see this picture

Arcs trace orbits of disk material around black hole... can be compared with predicted GR orbits

"Iron line hot spots" from

- orbiting coronal flares
- corrugations in disk surface
- patchy ionization structure

Keplerian orbit of a single "hot spot"

a=0.98 $i=30^{\circ}$

R=3.0 I=30

F=5×10⁻¹¹ erg/s/cm2; EW=20eV; M=6×10⁷ r=2.5; a=0.95; i=30 degrees

F=5×10⁻¹¹ erg/s/cm2; EW=20eV; M=3×10⁷ r=2.5; a=0.95; i=30 degrees

F=5×10⁻¹¹ erg/s/cm2; EW=20eV; M=1×10⁷ r=2.5; a=0.95; i=30 degrees

F=5×10⁻¹¹ erg/s/cm2; EW=10eV; M=1×10⁷ r=2.5; a=0.95; i=30 degrees

Scheme for testing GR

 Spin measurements are fundamentally measuring aspects of the spacetime metric

$$ds^2 = -\left(1 - \frac{2Mr}{\Sigma}\right)dt \left(-\frac{4aMr\sin^2\theta}{\Sigma}dt\,d\phi\right) + \frac{\Sigma}{\Delta}dr^2 + \Sigma d\theta^2 + \left(r^2 + a^2 + \frac{2a^2Mr\sin^2\theta}{\Sigma}\right)\sin^2\theta d\phi^2$$

- From iron line tracks, we can measure a spin at a number of different radii (assuming GR)...
 - Powerful consistency check... inferred spin had better be independent of radius
 - Many deviations from GR would produce a radial dependence on the inferred spin

F=5×10⁻¹¹ erg/s/cm2; EW=20eV; M=6×10⁷ r=2.5; a=0.95; i=30 degrees

F=5×10⁻¹¹ erg/s/cm2; EW=20eV; M=6×10⁷ r=2.5; a=0.95; i=30 degrees

Power spectra from a phenomenological flare model Zycki & Niedzwiecki (2005)

Power spectra from MHD simulation including relativistic photon propagation effects (Armitage & CSR 2003)

Comparison of simulated accretion flow with test-particle orbits...

II: Probing Black Hole Spin

Relevance of ISCO confirmed by MHD simulations of thin disks (at least for low-spins)

Brenneman & Reynolds (2006)

Constellation-X simulation

1 million 2-10keV photons; constrains a>0.90 for a_{model}=0.95

2-10keV count rate of 13cps for a F_{2-10} =10⁻¹¹erg/s/cm²

In how many AGN can we measure spin?

- Strategy: target known AGN on the basis of flux and the presence of a broad iron line... "run down the log N - log S curve"
- Canonical parameters...
 - Need $n_{ph}=10^6$ 2-10keV photons to determine spin to 10% accuracy
 - Assume f=0.5 of sources possess broad iron line
 - Suppose we devote 10Ms to spin measurements
- Using HEAO-A1 LogN-LogS...

$$N_{tot} \approx 140 \left(\frac{f}{0.5}\right)^{2/5} \left(\frac{n_{ph}}{10^6}\right)^{-3/5} \left(\frac{\Omega}{3\pi}\right) \left(\frac{T}{10^7 s}\right)^{3/5}$$

- Need precusor survey to identify those sources with broad iron lines
 - Con-X can obtain sufficient s/n on brightest 500+ AGN in 10Ms
 - Some fraction of this precusor work will be conducted by XMM and Suzaku beforehand

Why do we care about spin?

- Spinning black holes are potentially powerful energy source
 - Drive relativistic outflows/jets(Blandford-Znajek effect)
 - Enhance dissipation in inner regions of accretion disk
 - High-energy particle acceleration
- Spin encodes formation and evolution of the black hole
 - Natal spins in stellar-mass BHs...
 probe formation event
 - Probe accretion/merger history in AGN

The "spin paradigm" of AGN

- What underlies the radio-loud /radio-quiet dichotomy?
- Revised Spin Paradigm
 - AGN radio loudness determined by spin and Mdot
 - Rapid BH spin is necessary but not sufficient for powerful jets
 - Postulate that bulge-dominated galaxies have higher-spin than disk dominated
 - Low-Mdot... spin powered jet
 - High-Mdot... jet quenched

Sikora, Stawarz & Lasota (2006)

 MCG-6 already suggests breakdown of this hypothesis

Constellation-X "Key Projects"

- Con-X Strong Gravity Project
 - Use iron line variability in brightest ~10 AGN to probe Kerr metric
- Con-X Spin Survey (10Ms)
 - Measure black hole spin in 150-300 AGN
- Con-X AGN Survey (precusor)
 - Observe brightest 500+ AGN in 2-10keV sky (<10Ms)
 - Identify all objects with relativistic iron lines

Beyond supermassive black holes... spanning the mass scales

- Can measure spins in stellar mass, intermediate mass, and super-massive black holes!
 - Time-averaged iron line profiles are insensitive to mass (consequence of scale invariance of GR)
- Constrain mass function of IMBHs from modeling thermal disk radiation
 - Compare with predictions for stellat-cluster core collapse, Pop-III remnants and/or primodial BHs
- Constrain "large" scale extra dimensions from life-time of stellar-mass black holes
 - Age constraints (e.g., from Con-X studies of mass transfer) translate into constraints on size of extra dimension [due to increased Hawking evaporation]

Conclusions

- Constellation-X enables extremely exciting black hole and strong gravity studies!
- Orbital iron line variability
 - Even low s/n tracks provide good constraints on radius and spin
 - Probe for deviations of GR from radial dependence of inferred spin parameter
- Constellation-X Spin Survey
 - Can measure spin in 150-300 AGN in 10Ms
 - Open up astrophysics of BH spin for the first time
 - Need precusor survey to identify broad line sources

Assessment of constraints from orbiting blobs (Chris Reynolds & Cole Miller)

Current status

- Constructed libraries of orbital tracks
- Constructed "single blob" Con-X simulations
- Developed simple (grid-search) fitting algorithm.
- Obtain extremely good constraints from even moderate s/n tracks (r, a, phase, norm as free parameters; assuming known mass & inclination).

Future work

- More sophisticated fitting algorithms (MCMC).
- Assess spin constraints as function of radius, mass, flux
- Explicit demonstration of multiple track decomposition

Brenneman & Reynolds (2006)